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Experimental data on surface solitary waves generated by five methods are given. These data 
and literature information show that at amplitudes 0.2 < a/h < 0.6 (h is the initial depth of the 
liquid), experimental solitary waves are in good agreement with their theoretical analogs obtained 
using the complete model of liquid potential flow. Some discrepancy is observed in the range of 
small amplitudes. The reasons why free solitary waves of theoretically limiting amplitude have 
not been realized in experiments are discussed, and an example of a forced wave of nearly limiting 
amplitude is given. The previously established fact that during evolution from the state of rest, 
undular waves break when the propagation speed of their leading front reaches the limiting speed 
of propagation of a solitary wave is confirmed. 

In the present work, we consider plane solitary waves on the free surface of a liquid of uniform density 
and finite depth h above an even horizontal bot tom. In the unperturbed state, the liquid is at rest. The 
information obtained on such waves till 1952 was reviewed by Daily and Stephan [1], who examined 11 
theoretical solutions and verified them in detailed experiments. All the solutions considered in [1] referred to 
waves of small ampli tude and differed greatly from each other. This did not permit  the notion of a "solitary 
wave" to be given uniquely, and the fundamental  problem of the limiting amplitude a and propagation speed 
c of a solitary wave remained to be solved. The studies of Daily and Stephan [1] provided the best support 
for the solutions of [2, 3], which "agreed well with experimental data up to a ~ 0.5h. In the experiments of [1], 
the largest wave amplitude reached 0.62h. 

Subsequently, "soliton-like" solutions were obtained in various equations of mathematical  physics, in 
particular, in models for the motion of liquid stratified in density. For surface waves, algorithms that  extremely 
restrict the term of a"solitary wave" and do not contain limitations on its amplitude were proposed, justified, 
and used in numerical calculations. 

In its most limited sense, a theoretical free solitary wave is defined as a solution of the complete 
equations of liquid potential flow that satisfies the standard (for this model) boundary conditions on the 
solid boundary and free surface and the conditions of steadiness, symmetry about the wave crest (including 
at infinity), and monotonic lowering of the free-surface level on each side of the crest [4-8]. The  existence 
theorems for the corresponding solutions are proved by Amick and Toland [6]. At the same time, Longuet- 
Higgins [5] showed by numerical calculations that  these solutions are not unique, and Plotnikov [7] proved 
this rigorously. 

Detailed information on an ideal solitary wave is contained in [4, 5], where it is noted, in particular, 
that  in calculations of the limiting parameters of a solitary wave, one has to introduce a priori additional 
assumptions, which are responsible for the difference between the results of different authors. This difference, 
however, is not as considerable as the one in the theories verified in the experiments of Daily and Stephan 
[1]. Among recent algorithms that  gave solitary-wave solutions for the complete model of potential  flow, the 
algorithm developed by Ovsyannikov [8] should be mentioned. 
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Fig. 1. Diagram of the experiments: 1) baffle; 2) gate; 3) wing; 4) vertical 
plate; 5) submerged body. 

The numerical solution of [5] practically corresponds to an ideal theoretical solitary wave, and it is 
desirable to verify it in experiments. In particular, Longuet-Higgins and Fenton [5] showed that the solution 
is not unique and obtained fairly exact limiting amplitude am = 0.827h and limiting propagation speed 
cm = 1 .294v/~  for an ideal solitary wave (g is the acceleration of gravity). In addition, they tabulated values 
of the mass, momentum, energy, and specially determined circulation for an ideal wave. 

In experiments, and especially in natural processes~ none of the above-mentioned conditions for the 
existence of an ideal solitary wave is rigorously satisfied. A real wave is always unsteady, the flow generated 
by it is not potential, and the symmetry conditions ahead of and behind the wave are inevitably violated. 
In experiments, it is particularly difficult to meet with equal accuracy the necessary conditions on mass, 
momentum, energy, and circulation for an ideal solitary wave. This makes the problem of correlation between 
ideal and real solitary waves very important. This problem was analyzed using the above-mentioned works, 
the experimental information from [9-17], and the results of the experiments described below. 

The experiments were performed in a tank 7.3 m long and 0.2 m wide (Fig. 1). The following five 
methods of generating perturbations were used. 

M e t h o d  1. This method was used in [1, 13] and other experiments. A certain volume of a liquid 
was poured into the working section of the tank by short-duration removal of baffle 1. This easily ensures the 
necessary conditions on the mass of an ideal solitary wave. As regards the other integral conditions, the extent 
to which they are met depends entirely on the skill of the experimenter [1, 13] since there is just one easily 
variable parameter of the perturbation - -  the difference in levels at the baffle - -  and the other conditions 
have to be selected by intuitive variation of the law of motion of the baffle. When the baffle is removed too 
rapidly or too slowly, a solitary wave is generated nevertheless, but it has a rather small amplitude and forms 
at a great distance from the perturbation source. 

M e t h o d  2. Baffle 1 was rapidly removed and was not placed again. The initial difference in level at 
the baffle was such that it ensured obviously excessive values of the mass, momentum, and energy of an ideal 
solitary wave. This resulted in formation of an unsteady undular wave with several crests and troughs. As soon 
as the first crest of the undular wave became similar to a solitary wave, the tail of the wave was cut off by the 
rapidly falling gate 2. This method is easier to automate  since it contains two easily controllable additional 
parameters of the perturbation: the distance from the baffle to the gate and the t ime interval between the 
rise of the baffle and the lowering of the gate. 

M e t h o d  3. This method was used, for example, in [9, 14]. Perturbation was induced by horizontal 
displacement of vertical plate 4. In [9], the plate covered the entire cross section of the tank and prevented 
overflow of the liquid from above. In these experiments, along with the indicated particular case, the more 
general case was studied in which the plate incompletely covered the cross section of the tank. This makes 
another easily variable parameter available to the experimenter. The following law of motion of the vertical 
plate was specified: 

{ [ ( U ( t ) =  U0 1 - e x p  -T'~I ' 0 ~ < t < T 2 ,  

o, t >~ T2, 
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where t is t ime and U0, T1, and T2 are parameters. In this case, even at shallow initial water depth in the 
tank h = 3 cm, it was possible to obtain solitary waves that were in good agreement with theoretical waves, 
which is not easy to realize by removing the baffle [1]. 

M e t h o d  4. This method can be regarded as a more complicated variant of method 3. Perturbation 
was induced by completely submerged body 3 moving along the tank. In this case, the liquid can flow around 
the obstacle not only from below, as in incomplete submersion of the plate (see method 3), but also from 
above, and the experimenter gains another easily variable parameter - -  the distance of the body to the free 
surface hi. The shape of the body and its angle of attack are of significance. In these experiments, we used a 
streamlined symmetric wing of width D towered at zero angle of attack. In the transverse direction, the wing 
extended over the entire width of the tank. Only the above-mentioned law of motion was specified. 

M e t h o d  5. This method was used previously by Russel [15], who was the first to discover solitary 
waves. Perturbation was induced by submersion of a solid body 5. Two parameters of this perturbation are 
easily varied. These are the length of the body along the tank and the depth of submersion of its lower edge. 
The taw of motion of the body required to generate solitary waves of rather large amplitude is more difficult 
to choose. 

We also used information obtained when perturbations were induced by the following two methods: 
by raising a part of the bottom [16] and by a body falling from air into water [17]. Such perturbations are 
typical of full-scale conditions. The work of Hammack and Segur [16] is of interest because they first calculated 
the desired law of rise of the bottom theoretically and then reproduced it in experiments. Their main goal 
was to break an undular type wave at a given point of the tank. Solitary waves were also obtained, but their 
amplitudes were far from being limiting. In the experiments of [17], most of the perturbation energy dissipated 
in the complex processes near the body, and the amplitude of the solitary waves generated at a great distance 
from the place where the body fell was far from being theoretically limiting. 

The departure of the free surface from the equilibrium position Ay = (y -- h) was measured by 
wavemeters (y is the ordinate of the free surface in the immovable system shown in Fig. 1). The signals from 
the wavemeters were put on a recorder and a computer. The propagation speed c of a selected point on the 
wave profile was calculated from the time required for this point to travel between two fixed wavemeters 
displaced by Az = (6-17)h; smaller values of Ax were specified in the region where the wave profile varied 
more rapidly. The particular values of c presented below refer to the crest of a solitary wave or to the first 
crest of a wave of a more complex shape. The departure of this point from the equilibrium position is assumed 
to be the amplitude a of the experimental wave. The measurement errors for the propagation speeds and 
amplitudes were estimated (and decreased) from results of repeated measurements under the same conditions. 
The coefficients of variation in random errors obtained by this method did not exceed 1% for a and 1.5% for c. 

Vertical plate 4 and wing 3 were moved by a towing trolley, whose motion was recorded by special slide- 
wire mechanical-to-electric converters. The measuring system incorporated transducers for synchronizing the 
readings of the wavemeters with the initial time of perturbation generation. The instrumental measurements 
were accompanied by visual observations, accomplished, as a rule, by several executers, and, in some 
experiments, video recording was performed. In particular, the beginning of generation of oblique waves 
and beginning of breaking of the basic plane wave were detected visually. This information was synchronized 
in the x coordinate with the readings of the wavemeters. Visually, breaking began with a slide of a small mass 
of the liquid from the wave crest along its leading edge like an avalanche. A similar mechanism took place at 
the final stage of the reverse transition of breaking to smooth waves. 

The theoretical and experimental waves were compared with respect to the shape of their profile Ay(x), 
the relation between their amplitude and propagation speed, and, in particular cases, in the theoretical relation 
between the mass and potential energy given in [6]. The reference scales for dimensionless quantities were h 
and v/if//. In particular, a ~ = a/h and c o = c/v/~. 

In Fig. 2, selected experimental data are compared to some theoretical results in the plane of parameters 
(a ~ cO). The data were obtained for experimental waves that had the shape shown in Fig. 3 and for which 
the ratio of the mass to the potential energy differed from the theoretical value of [4, 5] by not more than 2%. 
Experimental points 5 are taken from [1]. Points 6 and 7 are obtained in the present experiments. The first 
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Fig. 2. Comparison of theoretical and experimental amplitudes and propagation 
speeds: points 1 refer to submersion of a piston, points 2 to motion of a vertical 
plate, 3 to removal of the baffle, 4 to removal of the baffle and lowering of the gate, 
5 are results of [1], 6 are results of [14], points 7 refer to motion of the Wing, curve 
8 is plotted using the theories of [2, 3], curve 9 is plotted by the calculations in 
[5], curve 10 is the boundary of the region of existence according to [6], curve 11 is 
plotted by the of theory [18], and curve 12 is plotted by the theory of [19]. 
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Fig. 3. Profile of a solitary wave generated by different 
methods (the notation is the same as in Fig. 2). 

point refers to a substantially unsteady wave, and the second refers to a forced solitary wave. The conditions 
under which these points were obtained will be discussed below. 

The calculated curve 9 from [5] practically corresponds to an ideal wave. The nonuniqueness of the 
solution was manifested by the fact that in the neighborhood of the limiting amplitude, one value of c o 
corresponds to two values of a ~ Curves 8, 11, and 12 are plotted by the formulas for waves of small amplitude 
presented in [1]. They demonstrate that until the solutions of the complete equations of liquid potential flow 
was analyzed, the term "solitary wave" had too broad a sense. 

Curve 10 reflects one interesting result of the theory of [6]. On this curve, the speed of liquid particles 
Urn on the crest of an ideal wave becomes equal to c. If c is t reated as the rate of transfer of information on 
perturbation and um is treated as the (local) rate of transfer of mass or energy, then, according to the theory 
of [6], curve 10 is the boundary of the fundamental physical exclusion that states that the rate of transfer 
of mass or energy cannot exceed the rate of transfer of information on perturbation. On this boundary, a 
theoretical solitary wave reaches the limiting amplitude. The experiment shows that the physical exclusion 
is manifested not only in the behavior of solitary waves but also in other practically important cases. If, 
during development of a perturbation, a corresponding critical situation arises somewhere in the liquid, the 
flow pat tern changes qualitatively. In the present experiments, waves that appear, during their evolution, to 
the right of curve 10 invariably break. In the experiments of [17] with a body falling from air on water, even 
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discontinuity of the liquid took place. 
It should be noted that by this criterion, the abscissa c o -- 1 in Fig. 2 can also be treated as a critical 

boundary, but only within the framework of the l inear theory of waves. On the abscissa, the phase speed of 
propagation of infinitely long linear harmonic waves becomes equal to their group speed, which characterizes 
the energy transfer rate. In experiments, with passage through this boundary, oblique waves invariably appear 
on the fundamental plane wave. In particular, oblique waves are also present on a real solitary wave, and this 
is an important feature that distinguishes this wave from an ideal wave. In practice, the propagation of oblique 
waves is inhibited by surface tension. It is not impossible, however, that oblique waves lead to loss of stability 
before the boundary 10 in Fig. 2 is reached. This is the reason why in experiments a free solitary wave of 
theoretically limiting amplitude has not been reproduced. 

The experimental data obtained with different methods of wave generation agree with each other and 
with the experimental results of [1] within the measurements errors. The slight systematic deviation of the 
experimental points in [1] can be explained by the fact that they were obtained for greater distance A x / h  

between wavemeters than that in the experiments considered. In the class of f ree  waves, none of the above 
methods of generating perturbations gave solitary waves with a ~ > 0.58. In [1] and [9], the largest experimental 
waves had a ~ -~ 0.62. However, from the information contained in [1, 9], a quantitative comparison with the 
theory can be performed only by the relation between the amplitude and propagation speed. At the same 
time, an important limiting factor is, for example, the marked difference between experimental and ideal 
waves of large amplitude by such criterion as the ratio of the mass to potential energy. 

In both the present experiments and in the experiments of [1], systematic deviation from an ideal wave 
at a ~ < 0.2 took place. From physical considerations, such deviation is reasonable since in real systems, flow 
rearrangement begins before and terminates after this or that critical situation predicted by the schematic 
model, and the waves from the indicated range are rather close to the lower boundary of the region of existence 
of solitary waves. 

In the range 0.2 < a ~ < 0.6, ideal and real waves agree well in the relations between the amplitude and 
propagation speed and between the mass and potential energy. Here the most significant difference was the 
asymmetry of the experimental wave shown in Fig. 3, where the experimental profiles of solitary waves with 
amplitudes in the neighborhood.of a ~ = 0.55 -l- 0.03 are plotted in the coordinates ~ = x l / l .  and 7 I = A y / a  

attached to the wave crest. The value xl was calculated from the formula x l  = xo + c(t - to), where x0 is the 
coordinate of the wavemeter in the fixed system and to is the time taken for the wave crest to travel from 
the coordinate origin to the wavemeter. As l. we use the value of xl for which ,7 = 1/2. The notation of the 
experimental points is the same as in Fig. 2. The solid curve shows the symmetric profile 77 = sech20.8813~, on 
which the numerical coefficient is selected empirically from the condition r /=  1/2 at { = 4-1. The leading edge 
of the experimental wave is well approximated by this formula, and the trailing edge is more gently sloping. 

The difficulties in generating a solitary wave of theoretically limiting amplitude in experiments are 
discussed using the data shown in Figs. 4 and 5. Figure 4 shows two sample trajectories in the "phase" plane 
(a ~ c ~ for the perturbations induced by the motion of a vertical plate. The experimental points A, B, and C 
correspond to the waves A, B, and C in Fig. 5. The experimental values a ~ and c o refer to the first wave crest. 
During evolution from the state of rest, the perturbations were always to the left of the critical curve 8. The 
wave profiles at the points A, B, and C on one of the trajectories are given in Fig. 5. At points 1 and 3, the 
waves were forced since at the corresponding times the plate still moved. The remaining points are obtained 
after the stop of the plate. At points 5, the leading edge of the wave broke. At the remaining points of the 
trajectories the waves were smooth. 

On the trajectory with experimental points 1 and 2, the waves remained smooth until complete 
degeneration. At a particular stage of evolution, a solitary wave formed, which is in good agreement with 
the results of [2, 5], but by this time its amplitude became considerably smaller than a~ It is interesting that 
during further degeneration due to viscosity and reflection from the end walls of the tank, the parameters of 
the experimental solitary wave were similar to the theoretical values for an ideal liquid for a long time. That 
is, the following quasisteadiness principle was satisfied: as the amplitude decreased, the propagation speed 
decreased accordingly. 
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Fig. 4. Examples of trajectories of real processes in the plane (a ~ cO): points 1 and 
3 refer to forced smooth waves, points 2 and 4 to free smooth waves, points 5 to 
free breaking waves, curve 6 shows the results of [2, 3], curve 7 shows the results of 
[5], and curve 8 is plotted from the da ta  of [6]. 
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Fig. 5. Breal(up of an initial complex per turbat ion into solitary waves. 

In the above example,  the fluid mass set in motion by the plate was smaller than the theoretical mass 
for a limiting solitary wave. In the example with experimental  points 3-5, the initial perturbat ion had an 
obviously excessive mass. As a result, breaking of the leading edge began at the point B of the perturbation 
trajectory. It is interesting that  although the wave at this point  of the trajectory differed greatly in shape 
from a solitary wave (see Fig. 5) and was substantially unsteady, it began to break when its propagation 
speed was the same as the maximum propagation speed of an ideal solitary wave. More detailed information 
on this issue is contained in [14]. The reverse transition from breaking to smooth waves occurred at lower 
propagation speed c o ,.~ 1.22. At the point C of the trajectory considered, two solitary waves (see Fig. 5) were 
generated. During further  degeneration, the parameters of the first wave traced the corresponding values for 
an ideal wave. 

The data  in Fig. 4 show that  in order for a theoretical solitary wave of limiting ampli tude to be 
produced in experiments,  the trajectory of the corresponding process must reach the point of intersection 
of curves 7 and 8, remaining all the t ime to the  left of curve 8, and the perturbation should have strictly 
definite mass, momen tum,  and energy. Up to not,  it has not been possible to meet  these requirements even 
in laboratory experiments.  

Experimental waves that  are similar to solitary waves and have a nearly theoretical amplitude am 
are quite often obtained in unsteady and forced processes. Such a wave was recorded, for example, in the 
experiments of [14] (point  6 in Fig. 2). It remained smooth for a much shorter t ime than the other experimental 
points and then broke. 
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Fig. 6. Forced solitary wave generated by a wing moving 
at the critical velocity: 1) wing; 2) bottom of the tank; 
U/cm = 0.99 -1- 0.01, D / h  = 1/3, and h l /h  = 1/3. 

A forced wave of large amplitude (point 7 in Fig. 2) was obtained in the present experiments by 
generating perturbations by a moving wing. This wave is shown in Fig. 6. Here ~1 = x2/h; z2 differs from the 
previously determined xl only in that the reference point is attached not to the wave crest but to the leading 
edge of the wing (in Fig. 6, the shape of the wing is distorted because of different scales on the coordinate 
axes; the real wing had an elongation of 6 : 1). The ordinate is 771 = Ay /h .  The wave was steady while the 
wing moved at constant speed. When the wing stopped, it broke rapidly into waves with a sign-alternating 
deviation from the equilibrium position. 

The wave in Fig. 6 is of interest since it forms only for a strictly definite combinations of the parameters 
of the system and perturbation, i.e., it is parametrically unstable; small variations of the parameters of the 
system or perturbation lead to a strong qualitative change in the wave pattern. A necessary conditions for the 
existence of the wave considered is the equality U -- cTn (U = const is the wing speed). In the experiments 
performed at U / c m =  0.97, a train of smooth waves similar to solitary waves propagated unrestrictedly far 
upstream. The number of separate waves in the train continuously increased, and their amplitudes reached 
0.6am. At U/cm > 1, the perturbations ahead of the body were absent or they propagated in the form of 
breaking waves. This depended on the combination of other parameters, for example, the degree of flow 
blocking by the wing or the depth of location of the wing under the free surface. 

Thus, the theory of an ideal solitary wave adequately describes real objects, at least, in the range 
0.2 < a e < 0.6. The range 0.6 < a ~ < a~ has not been adequately investigated in experiments so far. It can 
be noted only that  free solitary waves from this range can hardly be generated in natural processes since even 
in a laboratory experiment, it is not possible to meet all the necessary conditions for their existence. For an 
adequate description of real waves with a ~ < 0.2, it is necessary to use more complex mathematical models 
than the model of potential flow. A particular important result of the theory of ideal solitary waves is that it 
revealed the critical propagation speed c~n ~ 1.294v/~, which appears in different problems, for example, in 
propagation of undular and forced nonlinear waves. 
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